

TwinCAT

<u>The Windows Control and Automation Technology</u>

NC PTP

<u>Numerical</u> <u>Control</u> <u>Point</u> <u>To</u> <u>Point</u>

NC-PTP

Part I General

- Overview
- Axis types
- Functional principle
- Referencing
- Motion Control Function blocks

Teil II Practical Part:

- Setting up NC axes in the System Manager
- Starting NC axes from the PLC

Software NC PTP

•Part I General

- •Overview
- Axis typesFunctional principleReferencingMotion Control
- **Function Blocks**

Teil II Practical Part: •Setting up NC axes in the System Manager •Starting NC axes from the PLC TwinCAT NC Point-to-Point (PTP) is an axis positioning software with integrated PLC, NC interface, operating program for axes setup and I/O connection of the axes through the fieldbus.

Up to 255 axes can be moved at the same time.

TwinCAT NC PTP supports axis drive by switched motors, stepper motors, frequency controlled and servo controlled motors.

4

Software NC PTP

TwinCAT NC PTP

Programming	Performed using function blocks for TwinCAT PLC according to IEC61131-3, convenient axis commissioning menus
Debugging	Online monitoring of all axis state variables such as actual/set value, enable, controller values, online axis tuning, forcing axis variables
Runtime system	NC Point-to-Point (NC PTP) including TwinCAT PLC
Number of axes	Up to 255 in up to 255 channels
Axis types	Electrical and hydraulic servo drives, frequency converter drives, stepper motor drives, switched drives (fast/crawl axes)
Cycle time	Min. 50 µs, typ. 1 ms (freely adjustable)
Axis functions	Standard axis functions: start/stop/reset/reference Velocity override, target override Special functions: master-slave cascading, electronic gearboxes, online distance compensation of segments

Camshafts, Flying saw, FIFO

Camshafts

Software solution for electronic camshafts, obviating the need to use mechanical camshafts and special hardware assemblies. A table relates the position of the master axis (mainshaft) to the associated position to which the slave axis is driven.

Flying saw

5

The "flying saw" (diagonal slave) is a special kind of slave coupling. The slave axis is brought from standstill to a speed synchronous with the master.

FIFO

Instead of using internal generation of standard set values, an axis can also obey an externally calculated sequence of set values that can be supplemented as the movement of the axis proceeds (FIFO buffer).

Software NC I

TwinCAT NC Interpolation (NC I) is the NC system for linear or circular interpolated path movements of axis groups each involving two or three drives. TwinCAT NC I offers 2D and 3D interpolation (interpreter, set point generation, position controller), an integrated PLC with an NC-I interface and an I/O connection for axes via the field bus.

	TwinCAT NC I
Programming	DIN 66025 programs for NC interpolation, access via function blocks for TwinCAT PLC according to IEC61131-3
Debugging	Online monitoring in the TwinCAT System Manager with the following displays: present set/actual positions, following errors of all axes, NC program line presently being executed/interpreted, channel status
Runtime System	NC PTP + NC interpolation, including TwinCAT PLC
Number of axes	3 axes per group, 1 group per channel, max. 255 channels
Axis types	Electrical servo-axes
Interpreter- functions	Subroutines and jumps, programmed loops, zero shifts, tool compensations, M and H functions,
Geometries	Straight lines and circular paths in 3D space, circular paths in all main planes, helixes with base circles in all main planes
Axis functions	Online reconfiguration of axes in groups, path override, slave coupling to path axes

09.09.2023

Part I General
Overview
Axis types
Functional principle
Referencing
Motion Control
Function Blocks

Teil II Practical Part: •Setting up NC axes in the System Manager •Starting NC axes from the PLC

7

Continuous axes

The axis responds to a continuously changeable set value The set value is generated by TwinCAT NC,

e.g. servo with +/- 10 V, Sercos drive, frequency converter, linearised hydraulic axis, stepper motor drive with amplifier

8

Axis types

speed axes

two-stage set speed value ction of rotation:

ORWARDS/REVERSE

The set value is generated by TwinCAT NC,

e.g. frequency converter with fast/slow inputs, combination interlock. Warning: Acquisition of actual value (Encoder is necessary)

stepper motor

oper motor which is connected acts to pulses (A/B from the minals)
motor turns quicklylSlow

pulse sequence -> motor turns slowly

The set value (= pulse pattern) is generated by TwinCAT NC.

per motor, Hardware

otor with 2A output terminals

r is NOT required ual value, since the pulses that are output are counted.

! The mechanical design and/or maximum rotary speed/torque should be examined to ensure that the motor will be able to "keep up", since an output terminal cannot provide an increased voltage at higher frequency

coder axis,

insists of an encoder.

xes can be coupled to this w the set encoder value of the virtual encoder axis. (Gear ration possible)

HAND WHEEL FUNCTION

a speed value tion is monitored.

<u>itput:</u>)re-control)ller output

(acceleration pre-control also is optional)

Feedback:

Actual position value

At specific axis types e.g. SERCOS is also a direct output of the **Setposition** in NC time possible.

Functional principle of the TwinCAT NC

Part I General
Overview
Axis types
Functional principle
Referencing
Motion Control
Function Blocks

Teil II Practical Part: •Setting up NC axes in the System Manager •Starting NC axes from the PLC TwinCAT NC works with a velocity pre control. The Position controller controls the observance of the set position ("Motion" and position control).

> Further available options: -Acceleration pre control -Position control with two P constants -direct output of the position. (Sercos Axes)

-High / low speed controller
-Stepper motor controller
-External Setpoint generation (ab TwinCAT 2.9)
-Linearisation of pre control for non linear axes (Hydraulic axes).

Functional principle of the TwinCAT NC

Set value generation

Setpoint generator

Set value profiles

The profile of the velocity output can be variied during an defined brake time
Thereby the acceleration change (jerk) can be reduced considerably.
This works out on in the short run mechanical burdens and commensurate with as well on the electric burden of the drive.

Set value profiles

Set value profiles

Set value profiles

Set value profiles

Die Vorgabe kann sehr einfach über die Vorgabe der Hochlaufzeit und der Auswahl des Profils im System Manager erfolgen!

Output Linearisation: TwinCAT Valve Diagram Editor

- Problem: non linear charcateristic curves of valves
- Solution
 - Measurement of the curves with the PLC Program
 - import the values to the System Manager
 - graphical Linearisation
 - Interpolation (Polynomial of 5th degree)
 - Load to NC
 - Outputs are linearized

22

TwinCAT Valve Diagram Editor

	Function	Velocity	Velocity [%]	Voltage [%]	Range [%]	Range
NC - Configuration	1 Synchron	-248.280200	-82.760067	-72.808000		
MC-Task 1 SVB	2 Synchron	-244.190000	-81.396667	-72.438800	0.166667	0.500000
+ NC-Task 1-ProzeBabbild	3 Synchron	-240.116700	-80.038900	-72.069500	0.166667	0.500000
P-Tables	4 Synchron	-235.612800	-78.537600	-71.697200	0.166667	0.500000
Master 1	5 Synchron	-231,603500	-77.201167	-71.327900	0.166667	0.500000
KennlinieVentilHale	6 Synchron	-226.638000	-75.546000	-70.958600	0.166667	0.500000
🖻 🚔 Achsen	7 Synchron	-222.527900	-74.175967	-70.586300	0.166667	0.500000
Achse 1	8 Synchron	-218.042900	-/2.68096/	-70.217000	0.165667	0.500000
PLC - Configuration	9 Synchron	-213.296/00	-71.098900	-69.844700	0.165667	0.500000
🖲 📸 Mappings General Master KennlinienImport Ke	80.0 1		Voltage [%]			+++++++++++++++++++++++++++++++++++++++
Name: KenninieVentiHale Assigned Axis: Achse 1	Table Id: 2			100000	+T1	
C Automatic Area Ratio Ar	sa Ratio A/B					
C Percent Ve C Absolut Ve	locity A 100% 500			p t		
			/	/		Velocity
	Download		1			
	-30.0 -		/			
	-40.0 -					
	100					
	-50.0 -					

Referencing

Part I General
Overview
Axis types
Functional principle
Referencing
Motion Control Function Blocks

Teil II Practical Part: •Setting up NC axes in the System Manager •Starting NC axes from the PLC Referencing (calibrate) is necessary for axis with not absolute encoder systems. Incremental Encoder, Single Turn Absolute Encoder, or not absolute encoder systems direct from the drive, (e.g. actual position value of AX2000).

At referencing the axis is lead to a fix reference position and the encoder is set to the current actual position.

Referencing initial state

Referencing

Referencing

Referencing

Referencing completed (b)

Referencing completed. Which position is set?

If "Position"**DEFAULT_HOME_POSITION** (global variable from TCMC.LIB) is submitted at the Fb input, the value is taken out of the System Manager.

Otherwise the value ist taken at the input "Position"

Motion Control Function blocks

Part I General
Overview
Axis types
Functional principle

- •Referencing
- •Motion Control Function Blocks

Teil II Practical Part: •Setting up NC axes in the System Manager •Starting NC axes from the PLC

Target: IEC61131-3 compatible programming interface for motion tasks

Beckhoff:

Motion Control Function blocks

Why a standard?

-Hardware independent Programming

-the same look and feel, identical Syntax

-IEC 61131-3 as Base

-Expansions for new application areas possible

-TwinCAT: Combination of MC blocks and TwinCAT specific Axis blocks possible.

⇒ Existing applications can be expanded with I Control blocks, without a new writing of the e flows. Beckhoff:

Beispiel : es müssen nicht unbedingt alle FB's aus der spec vorhanden sein

Motion Control Function blocks

Defined in: **The PLCopen Task Force Motion Control** by Manufacturer and end user

Atlas Copco Control		TetraPak		
Baumueller		Rovema Packaging Machines		
♦Beckhoff				
Control Techniques	Ford			
♦Elau		General Motors		
Giddings & Lewis				
♦Indramat				
Infoteam Software				
KW Software			Bookhoffi	
◆Lenze			Decknon.	
♦ Siemens			Beispiel : es	
♦ Softing			unbedingt alle	
Root: Task Force Motion Control pres	FB's aus der spec			

Statemachine:

Root: Task Force Motion Control presentation Version Febr2002. (www.plcopen.org)

36

Overview Function Block Class:

Standardized Handshake

Enable	Enable_Positive	Enable_Negative	NC Controller allows:
1	0	0	Position control
1	1	0	Position control + Start in positive direction
1	0	1	Position control + Start in negative direction
1	1	1	Position control + Start in positive or negative direction

MC Read /Write Parameter Number in TCMC.LIB

Example Read ActualVelocity

BECKHOFF New Automation Technology

Motion Function Blocks

Single Axis Motion Function Blocks

Motion Function Blocks

Mode of Operation Move Superimposed

Motion Function Blocks

Mode of operation see "<u>Referencing</u>"

Motion Function Blocks

BECKHOFF New Automation Technology

Motion Function Blocks Multiple Axis

Multiple Axis Motion Function Blocks

(non-interpolated)

Motion Function Blocks Multiple Axis

GEARING is the activation of a numeric ratio between master and slave axis. (comparable with a mechanical gearbox).

BECKHOFF New Automation Technology

Motion Function Blocks Multiple Axis

Linear "gearbox" fixed ratio of transmission : Vm/Vs

"Flying Saw"

Motion Function Blocks Multiple Axis MOTION DIAGRAM FOR GEARING

54

Motion Function Blocks Multiple Axis

Movement diagram

Part I General
Overview
Axis types
Functional principle
Referencing
Motion Control

Function Blocks

Teil II Practical Part: •Setting up NC axes in the System Manager •Starting NC axes from the PLC

Practical Part Setting up NC Axes in System Manager

Note: These bitmaps show all basic steps in the System Manager in for AX2000. Not all possible combinations are shown. Furthermore the Safety instructions are to be considered absolutely.

TwinCAT Information System NC -> Safety functionalities.

Axes Settings

Example configuration				
Data AX2000: Settings at the training devices				
Max. r.p.m.	3000			
Increments per Motor revolution (Encoderemulation of AX2000)	65535			
Adopted mechanical ration	1 motor revolution is equivalent to 1mm mechanical way			

BECKHOFF New Automation Technology

Axes Settings (adopted Application modell)

Enter Hardware

Enter Hardware

Result

Repeat steps for all further drives

Setting up NC Axes in the System Manager

Select and link drive type

Select and link drive type

Определение единиц измерения для оси

BECKHOFF New Automation Technology

Параметры энкодера. Коэффициент масштабирования (Scaling factor)

Translation of the collected actual position value in the way unit

 $ScalingFactor = \frac{milageWay}{NumberIncrements}$

Example:

 $ScalingFactor = \frac{1mm}{65535inc} = 1,52590e - 5\frac{mm}{inc}$

Further Encoder parameter (Notice)

General	NC-Encoder	Global	Incremental	Online				
ENCO	DER-Mode					Е	'POSVELO'	
Invert	Encoder Count	ting Direct	tion			В	FALSE	
Scalin	g Factor				×	F	0.0000152590)219 mm/INC
Positio	in Bias					F	0.0	mm
Modul	o Factor (e.g. 3	(60.0°)				F	360.0	mm
- Toler	ance Window	for Modul	o Start			F	0.0	mm
ENABLE: Min Soft Position Limit						В	FALSE	
- Software Position Limit Min					F	0.0	mm	
ENABLE: Max Soft Position Limit						В	FALSE	
- Soft	ware Position L	imit Max				F	0.0	mm
Filter T	ime for Actual	Position (I	P-T1)			F	0.0	s
Filter T	"ime for Actual"	Velocity (I	P-T1)			F	0.01	s
Filter T	ime for Actual.	Accelerat	ion (P-T1)			F	0.1	s
Encod	ler Mask (Maxir	nal Valuej)		ſ	D	0x0000FFFF	
ENAB	LE: Actual Pos	ition Corre	ection			В	FALSE	
Filter T	ime Actual Pos	sition Corre	ection (P-T1)			F	0.0	s

Drive parameter reference velocity

Further Drive parameter (Notice)

General NC-Drive Global Analog

DRIVE-Mode Invert Motor Polarity Minmum Drive Output Limitation [-1.0 ... 1.0] Maximum Drive Output Limitation [-1.0 ... 1.0] E 'STANDARD' B FALSE F -1.0 F 1.0

Global Axis parameter

Global Axis parameter

1		Global Ax	is paran	nete	er	(Notice)
	Axes					
	General Settings Global Dynamics	Online Functions C	oupling Compen	sation		
	Maximum Velocity Manual Velocity (Fast) Manual Velocity (Forward) Calibration Velocity (Forward) Jog Increment (Forward) Jog Increment (Backward) Acceleration Deceleration Jerk Override Type Setpoint Generator Type NCI: Rapid Traverse Velocity (G0) NCI: Velo Jump Factor NCI: Tolerance ball auxiliary axis NCI: Max, position deviation, aux. axis	F F F F F F F F F F F F F F F F F F F	2000.0 300.0 100.0 30.0 30.0 5.0 5.0 1500.0 1500.0 2250.0 Reduced (iterated 7 Phases 2000.0 0.0 0.0 0.0	mm/s mm/s mm/s mm/s mm mm/s2 mm/s2 mm/s3 t) mm/s		
	Software Position Limit Software Position Limit Min ENABLE: Max Soft Position Limit	F B	FALSE 0.0 FALSE	mm		
	Software Position Limit Max ENABLE: Position Lag Monitoring	F B	U.U TRUE	mm 	~	

Dynamic

General Settings Global Dynamics (Inline Functions Coupling Co	mpensation			
Indirect by Acceleration Time					
Maximum Velocity (V max):	2000	mm/s			
Acceleration Time:	2	s			
Deceleration Time: 🗸 as above	2	s			
	smooth	stiff			
Acceleration Characteristic:	·				
Deceleration Characteristic:					
a(t):	\land \land				
v(t):	s s	/			
O Direct					
Acceleration:	1500	mm/s2			
Deceleration: 💽 as above	1500	mm/s2			
Jerk:	2250	mm/s3			
	Download	Upload			

Взаимосвязь при изменении пераметров

Effects see <u>Set value profiles</u>

Starting NC Axes from the PLC

- Part I GeneralOverview
- •Axis types
- •Functional principle
- •Referencing
- •Motion Control
- **Function Blocks**

Teil II Practical Part: •Setting up NC axes in the System Manager •Starting NC axes from the PLC Example: A small project for starting an single axis should be created with the help of the MC Library

Notes:

- The control of the enable signals (hardware) is not treated in this example.
- The programming mode corresponds in this example to the classical PLC programming, that means global variables for the inputs and outputs and referencing in the POUs.
 - An alternative is the creation of FBs, which work internally with not total located variables for the axis interface.(VAR_CONFIG)

0

Inserting TcMC Library

Creating Input / Output variable between NC and PLC

 Globale_Variablen

 0001
 VAR_GLOBAL

 0002
 ("Axisinterface")

 0003
 Axis1GreiferPlcToNc
 AT%QB1000 :
 PLCTONC_AXLESTRUCT;

 0004
 Axis1GreiferNcToPlc
 AT%IB1000 :
 NCTOPLC_AXLESTRUCT;

 0005
 0005
 0005
 0005

To consider:

1 Variable occupies 128 Byte. Thus the next free address to start is IB/QB 1128.

In addition the possibility of auto addressing can be used.

Axis1GreiferPlcToNc **AT%QB*** : PLCTONC_AXLESTRUCT;

🧱 Glob	ale_¥ariablen		
0001	AR_GLOBAL		
0002	(*Axisinterface*)		
0003	Axis1GreiferPlcToNc A	T%QB1000:	PLCTONC
0004	Axis1GreiferNcToPlc A	.T%IB1000 : 👘	NCTOPLC
0005			
0006			
0007	(*I/O for control *)		
0008	genRelease A	.T%IX0.0:	BOOL;
0009	RequestHoming A	.T%IX0.1:	BOOL;
0010	RequestSequence A	T%IX0.2:	BOOL;
0011	SwitchReferenceCamAxi	s1 AT%IX0.3:	BOOL;
0.01.0			

Control inputs.

Linking with hardware,

" Writing values" in PLC Control, or

Control with a small VB / VC++

It's understood, that at direct commissioning at a movement, the safety precautions are to be considered

Linking Input / Output variable between NC and PLC

Linking Input / Output variable between NC and PLC

😎 Axissetup - TwinCAT System Manager

Linking further control inputs and writing configuration in registry

System can be started here.

Programming axis enables MC_POWER

			Neuer Baustein		×
Bausteine	Objekt einfügen Objekt umbenennen	>	<u>N</u> ame des Bausteins:	Releases	ОК
	Objekt bearbeiten		Typ des Bausteins	<u>Sprache des Bausteins</u>	Abbrechen
	Objekt kopieren		• Programm	⊂ A <u>w</u> L	
			C Funktions <u>b</u> lock	С <u>к</u> ор	
			C Eunktion	O FU <u>P</u>	
			<u>R</u> ückgabetyp:	⊂ <u>A</u> S	
			BOOL	⊂ s <u>i</u>	
				CFC	

Calling axis enables

Instantiate and call MC Home block

Global Status Variable for MC_Home

Calling Homing

Instantiate and call MC MoveAbsolute block

Calling Sequence

USE ONLY ONE POSSIBILITY!

----- Releases

······ Homing

sequence

09.09.2023

How can a flow be realised??

If the application requires flows, the MC blocks are normally used in sequence cascades.

The MC_XXXXX blocks are suited well for the use in Sequential Function Chart or in a case instruction in ST.

At graphic languages like CFC is in the first attempt a so-called cascading possible:

This acts reasonable, if for each command a new instance of the MC block is created

How can a flow be realised?

A further possibility is the using of the same instance with "EN" inputs which are controlled by step reminder.

To consider: The Fb accepts the next "execute" only, if there s a flank at the input.

In addition "Disturbances in the flow" like Command aborted and Error have to be considered.

How can a flow be realised?

PLC Project with "flow in CFC by using the EN inputs

